اثربخشی رعایت اصول طراحی آموزشی (14 اصل چندرسانه‌ای ون مرینبور و کستر) بر یادگیری و یادداری در محیط‌های یادگیری چندرسانه‌ای

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشیار گروه روان‌شناسی و عضو هیئت علمی دانشگاه پیام نور تهران

2 دانشیار گروه تعلیم و تربیت و عضو هیئت علمی دانشگاه تربیت مدرس تهران

3 استادیار گروه آمار و عضو هیئت علمی دانشگاه علوم پزشکی اصفهان

چکیده

هدف پژوهش حاضر تعیین اثربخشی اصول طراحی آموزشی بر یادگیری و یادداری در محیط­های یادگیری چندرسانه­ای (مجازی) است. روش پژوهش آزمایشی از نوع طرح پیش­آزمون- پس­آزمون با گروه کنترل بود. جامعه آماری شامل کلیه دانشجویان رشته علوم تربیتی دانشگاه پیام نور مرکز بوکان با تعداد 540 نفر بود. نمونه پژوهش شامل 180 نفر (110 مرد و 70 زن) می­باشد که در دو گروه آزمایشی (55 مرد و 35 زن) و کنترل (55 مرد و 35 زن) به شیوه نمونه­گیری تصادفی ساده انتخاب شدند. ابزار پژوهش، یادگیری و یادداری از طریق پیش­آزمون و پس­آزمون (محتوای درس آمار) است که روایی صوری آن­ها مورد تأیید متخصصین سنجش و آمار قرار گرفت و رعایت اصول طراحی آموزشی از طریق نرم­افزار مبتنی بر اصول چهارده­گانه طراحی آموزشی ون مرینبور و کستر (2005) که روایی درونی (94/0) و بیرونی (81/0) آن از طریق پرسشنامه 72 سؤالی محقق­ساخته مورد بررسی و اندازه­گیری قرار گرفت. نتایج نشان داد که رعایت اصول طراحی آموزشی تاثیر قابل توجهی روی افزایش یادگیری و یادداری گروه آزمایش نسبت به گروه کنترل دارد ( 01/0 ≥ P).

کلیدواژه‌ها


عنوان مقاله [English]

Effectiveness of Instructional Design Principles Applied to Learning and Retention in Multimedia Learning Environments

نویسندگان [English]

  • Hossein Zare 1
  • Mohammadreza Sarmadi 1
  • Hashem Fardanesh 2
  • Avat Feizi 3
1 Associate Professor, Department of Psychology, and a member of the faculty of Payame Noor University of Tehran
2 Associate Professor, Department of Education and Faculty Member, Tarbiat Modares University, Tehran
3 Assistant Professor of Statistics and Faculty Member of Isfahan University of Medical Sciences
چکیده [English]

The purpose of this study was to determine the effectiveness of instructional design principles applied to learning and retention in multimedia learning environments. This is an experimental study with pre-test and post test design. Statistical population consisted of all students majoring at Educational Sciences at BoukanPayameNoorUniversity (N=540). The sample included 180 students (110 male and 70 femal), assigned by simple random sampling to experimental (n=90, 55m, 35f) and control (n=90, 35m, 35f) groups. Instruments: learning and retention were measured by pre test and post test on Statistics.  The formal validity of measures was confirmed by academics with relevant expertise in measurement and statistics. Compliance to instructional design principles was measured by software based on Van Merriënboer and Kester's (2005) 14 instructional design principles was measured. Data were collected by a questionnaire developed by the researcher. Results showed that the application of instructional design principles had a significant impact on increasing learning and retention in experimental group (p  0.01).

کلیدواژه‌ها [English]

  • instructional design principles
  • learning
  • retention
  • multimedia learning environments
  1. کلارک، روت کلوین و میر، ریچارد ای. (1388). یادگیری الکترونیکی و علم آموزش. ترجمه داود کریم زادگان مقدم و زهرا جلال زاده، تهران: انتشارات دانشگاه پیام نور.
  2. Atkinson, R. K.; Derry, S. J.; Renkl, A.; & Wortham, D. (2000). Learning from examples: Instructional principles from the worked examples research. Review of Educational Research, 70, pp. 181-214.
  3. Baddeley, A. (1998). Human memory. Boston: Allyn & Bacon.
  4. Carlson, R. A.; Khoo, H.; & Elliot, R. G. (1990). Component practice and exposure to a problem-solving context. Human Factors, 32, pp. 267-286.
  5. Carlson, R. A.; Sullivan, M. A.; & Schneider, W. (1989). Component fluency in a problem-solving context. Human Factors, 31, pp. 489-502.
  6. Carney, R. N. & Levin, J. R. (2002). Pictorial illustrations still improve students’ learning from text. Educational Psychology Review, 14, pp. 5–26.
  7. Chandler, P. & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8, pp. 293-332.
  8. Chandler, P. & Sweller, J. (1992). The split-attention effect as a factor in the design of instruction. British. Journal of Educational Psychology, 62, pp. 233-246.
  9. Chi, M. T. H.; De Leeuw, N.; Chiu, M.; & LaVancher, C. (1994). Eliciting self-explanations improves understanding. Cognitive Science, 18, pp. 439-477.
  10. Chi, M. T.H. (2000). Self-enplaning expository texts: The dual processes of generating inferences and repairing mental models. In R. Glaser (Eds.), Advances in instructional psychology: Educational design and cognitive science. Hillsdale, NJ: Lawrence Erlbaum Associates.
  11. Chi, M.T.H.; Bassok, M.; Lewis, M. W.; Reimann, P.; & Glaser, R. (1989). Self-explanations: How students study and use examples in learning to solve problems. Cognitive Science, 13, pp. 145-182.
  12. Clark, J. M. & Paivio, A. (1991). Dual coding theory and education. Educational Psychology Review, 3, pp. 149-210.
  13. Kalyuga, S.; Chandler, P.; & Sweller, J. (1999). Managing split-attention and redundancy in multimedia instruction. Applied Cognitive Psychology, 13, pp. 351-371.
  14. Kester, L.; Kirschner, P. A.; & Van Merriënboer, J. J.G. (2006). Just-in-time information presentation: Improving learning a troubleshooting skill. Contemporary Educational Psychology, 31, pp. 167-185.
  15. Lee, C. H. & Kalyuga, S. (2011). Effectiveness of on-screen pinyin in learning Chinese: An expertise reversal for multimedia redundancy effect. Computers in Human Behavior, 27, pp. 11–15.
  16. Mautone, P. D. & Mayer, R. E. (2001). Signaling as a cognitive guide in multimedia learning. Journal of Educational Psychology, 93, pp. 377-389.
  17. Mayer, R. E. (2001). Multimedia learning. New York: Cambridge University Press.
  18. Mayer, R. E. (2009). Multimedia learning (2nd ed.). New York: Cambridge University Press.
  19. Mayer, R. E. & Anderson, R. B. (1992). The instructive animation: Helping students build connections between words and pictures in multimedia learning. Journal of Educational Psychology, 84, pp. 444–452.
  20. Mayer, R. E. & Moreno, R. (1998). A split-attention effect in multimedia learning: Evidence for dual processing systems in working memory. Journal of Educational Psychology, 90, pp. 312–320.
  21. Mayer, R. E. & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38, pp. 43-52.
  22. Mayer, R. E. & Sims, V. K. (1994). For whom is a picture worth a thousand words? Extensions of a dual-coding theory of multimedia learning. Journal of Educational Psychology, 84, pp. 389–460.
  23. Mayer, R. E.; Heiser, J.; & Lonn, S. (2001). Cognitive constraints on multimedia learning: When presenting more material results in less understanding. Journal of Experimental Psychology, 93, pp. 187-198.
  24. Mayer, R. E.; Moreno, R.; Boire, M.; & Vagge, S. (1999). Maximizing constructivist learning from multimedia communications by minimizing cognitive load. Journal of Educational Psychology, 91, pp. 638–643.
  25. Mayer, R. E. & Anderson, R. B. (1991). Animations need narrations: An experimental test of a dual-coding hypothesis. Journal of Educational Psychology, 83, pp. 484–490.
  26. Mayer, R. E. & Chandler, P. (2001).When learning is just a click away: Does simple user interaction foster deeper understanding of multimedia messages? Journal of Educational Psychology, 93, pp. 390–397.
  27. Mayer, R. E. & Wittrock, M. C. (1996). Problem-solving transfer. In D. Berliner & R. Calfee (Eds.), Handbook of educational psychology. New York: Macmillan, pp. 45-61.
  28. McDaniel, M.A. & Donnelly, M.C. (1996). Learning with analogy and elaborative interrogation. Journal of Educational Psychology, 88, pp. 508-519.
  29. Moreno, R. & Mayer, R. E. (1999). Cognitive principles of multimedia learning: The role of modality and contiguity. Journal of Educational Psychology, 91, pp. 358–368.
  30. Moreno, R. & Mayer, R. E. (2000). A coherence effect in multimedia learning: The case for minimizing irrelevant sounds in the design of multimedia instructional messages. Journal of Experimental Psychology, 94, pp. 117-125.
  31. Moreno, R. & Mayer, R. E. (2002). Verbal redundancy in multimedia learning: When reading helps listening. Journal of Educational Psychology, 94, pp. 156-163.
  32. Moreno, R.; Mayer, R. E.; & Spires, H. A. (2001). The case for social agency in computer-based multimedia learning: Do students learn more deeply when they interact with animated pedagogical agents? Cognition and Instruction, 19, pp. 177–214.
  33. Moreno, R. & Mayer, R. E. (2000). A coherence effect in multimedia learning: The case for minimizing irrelevant sounds in the design of multimedia instructional messages. Journal of Educational Psychology, 92, pp. 117–125.
  34. Mousavi, S. Y.; Low, R.; & Sweller, J. (1995). Reducing cognitive load by mixing auditory and visual presentation modes. Journal of Educational Psychology, 87, pp. 319–334.
  35. Paas, F. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach. Journal of Educational Psychology, 84, pp. 429-434.
  36. Paas, F. G. W. C.; Van Merriënboer, J. J. G.; & Adam, J. J. (1994). Measurement of cognitive load in instructional research. Perceptual and Motor Skills, 79, pp. 419-430.
  37. Paas, F. & Van Merriënboer, J. J. G. (1994). Variability of worked examples and transfer of geometrical problem-solving skills: A cognitive-load approach. Journal of Educational Psychology, 86, pp. 122–133.
  38. Paas, F.; Adam, J.J.; Janssen, G.M.E.; Vrencken, J.G.P.M.; & Bovens, A.M.P.M. (1994). Effects of a 10-months endurance training program on speeded perceptual-motor tasks. Perceptual and Motor Skills, 78, pp. 1267-1273.
  39. Paas, F.; Tuovinen, J.; Tabbers, H.; & Van Gerven, P. W. M. (2003b). Cognitive load measurement as a means to advance cognitive load theory. Educational Psychologist, 38, pp. 63-71.
  40. Paivio, A. (1986). Mental representation: A dual coding approach. New York: Oxford University Press.
  41. Pollock, E.; Chandler, P.; & Sweller, J. (2002). Assimilating complex information. Learning and Instruction, 12, pp. 61-86.
  42. Quilici, J. L. & Mayer, R. E. (1996). Role of examples in how students learn to categorize statistics word prob-lems. Journal of Educational Psychology, 88, pp. 144-161.
  43. Renkl, A. (1999). Learning mathematics from worked-out examples: Analyzing and fostering self-explanations. European Journal of Psychology of Education, 14, pp. 477-488.
  44. Richard E. M. & Roxana, M. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38(1), pp. 43–52
  45. Rosenshine, B.; Meister, C.; & Chapman, S. (1996). Teaching students to generate questions: A review of the intervention studies. Review of Educational Research, 66(2), pp. 181-221.
  46. Salden, R. J. C. M.; Paas, F.; & Van Merriënboer, J. J. G. (in press). A comparison of approaches to learning task selection in the training of complex cognitive skills. Computers in Human Behavior.
  47. Schnotz, W. (2005). An integrated model of text and picture comprehension. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning. Cambridge: Cambridge University Press, pp. 49-69.
  48. Schnotz, W. & Kürschner, C. (2007). A Reconsideration of cognitive load theory, Educational Psychology Review, 19:469–508.
  49. Schwonke, R.; Renkl, A.; Salden, R. J. C. M.; & Aleven, V. (2011). Effects of different ratios of worked solution steps and problem solving opportunities on cognitive load and learning outcomes. Computers in Human Behavior, 27, pp. 58–62.
  50. Sweller, J. (2004). Instructional design consequences of an analogy between evolution by natural selection and human cognitive architecture. Instructional Science, 32, pp. 9-31.
  51. Sweller, J. & Chandler, P. (1991). Evidence for cognitive load theory. Cognition and Instruction, 8(4), pp. 351-362.
  52. Sweller, J. & Chandler, P. (1994). Why some material is difficult to learn. Cognition and Instruction, 12(3), pp. 185-233.
  53. Sweller, J. (2003). Evolution of human cognitive architecture. The Psychology of Learning and Motivation: Advances in Research and Theory, 43, pp. 12- 30.
  54. Sweller, J.; Van Merriënboer, J. J. G.; & Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, pp. 251-296.
  55. Tindall-Ford, S.; Chandler, P.; & Sweller, J. (1997). When two sensory modes are better than one. Journal of Experimental Psychology Applied, 3, pp. 257-287.
  56. Van Gog, T.; Paas, F.; & Van Merriënboer, J. J. G. (2004). Process-oriented worked examples: Improving transfer performance through enhanced understanding. Instructional Science, 32, pp. 83-98.
  57. Van Merriënboer, J. J. G. (1990). Strategies for programming instruction in high school: Program completion vs. program generation. Journal of Educational Computing Research, 6, pp. 265-285.
  58. Van Merriënboer, J. J. G. & De Croock, M. B. M. (1992). Strategies for computer-based programming instruction: Program completion vs. program generation. Journal of Educational Computing Research, 8, pp. 365-394.
  59. Van Merriënboer, J. J. G. & Kester, L. (2005). The four-component instructional design model: Multimedia principles in environments for complex learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning. New York: Cambridge University Press, pp. 71-93.
  60. Yeung, A. S.; Jin, P.; & Sweller, J. (1998). Cognitive load and learner expertise: Split attention and redundancy effect in reading with explanatory notes. Contemporary Educational Psychology, 23(1), pp. 1-21.