Quasi-projective covers of right S-acts

Mohammad Roueentan and Majid Ershad

Abstract. In this paper S is a monoid with a left zero and A_S (or A) is a unitary right S-act. It is shown that a monoid S is right perfect (semiperfect) if and only if every (finitely generated) strongly flat right S-act is quasi-projective. Also it is shown that if every right S-act has a unique zero element, then the existence of a quasi-projective cover for each right act implies that every right act has a projective cover.

1 Introduction and Preliminaries

Let S be a monoid. For right S-acts A and B, A is called B-projective or projective relative to B if for every right S-act C, every homomorphism $f : A \to C$ can be lifted with respect to every epimorphism $g : B \to C$, that is there exists a homomorphism $h : A \to B$ such that $f = gh$. A_S is called projective if it is projective relative to every right S-act. Also A is called quasi-projective if A is A-projective and is called weakly-projective if A is projective relative to S_S ([1, 7]). There are quite a few papers describing projective acts and their generalizations. Some other generalizations of projectivity are principal weak projectivity, Rees weak projectivity and principal Rees weak projectivity, see [6]. Quasi-projective acts have been studied by Ahsan and Saifullah [1]. Also the concept of weakly-projective acts have been introduced by Knauer and Olthmanns [7]. In this paper we study the concept of quasi-projective cover. Recall that over a monoid S, an S-act A has a projective cover P if there is an epimorphism $f : P \to A$.
such that, P is projective and $f|_C : C \rightarrow A$ is not epimorphism for every subact C of P (see [5]). Similar to projective cover (as above) we can define quasi-projective cover, noting that P has to be quasi-projective in this case. Monoids which have a projective cover for each right act are called right perfect monoids. For more details concerning covers of acts, see [2, 3, 4, 8]. In [2], Fountain proved that a monoid S is right perfect if and only if every strongly flat right S-act is projective. From this point of view, we prove that for a monoid S to be right perfect it is enough to show that every strongly flat right S-act is quasi-projective (see Theorem 2.5). Also we give a characterization for monoids for which every cyclic strongly flat act is projective. To give the main result, we focus our attention on right S-acts which have a unique zero. It is shown that if each right S-act has a quasi-projective cover, then S is right perfect.

Modifying the proof of Lemma 1 of [1], we can deduce the following lemma.

Lemma 1.1. ([1]) Let S be a monoid with a left zero and $\varphi : A_S \rightarrow B_S$ be an S-epimorphism. If $A_S \sqcup B_S$ is quasi-projective, then B is a retract of A.

By the above lemma it is easy to see that over a monoid S with a left zero an S-act (a finitely generated S-act) A_S is projective if and only if there exists an epimorphism $g : P \rightarrow A$ such that P is a (finitely generated) projective right S-act and $P_S \sqcup A_S$ is quasi-projective. This fact implies the following theorem:

Theorem 1.2. Suppose S is a monoid with a left zero and X is a property of acts which is preserved under coproduct and is weaker than projectivity (such as strongly flatness, flatness and etc.), then the following are equivalent:

(i) Every (finitely generated) right S-act with property X is quasi-projective.

(ii) Every (finitely generated) right S-act with property X is projective.

By Theorem 4.10.5 of [5] and Theorem 1.2, the following result holds.

Corollary 1.3. Over a monoid S with a left zero the following are equivalent:

(i) Every principally weakly flat right S-act is quasi-projective.
(ii) Every weakly flat right S-act is quasi-projective.

(iii) Every flat right S-act is quasi-projective.

(iv) Every flat right S-act is projective.

(v) $S = \{1\}$

From Theorem 4.11.8 of [5] and Theorem 1.2, we can deduce the following Corollary.

Corollary 1.4. Suppose S is a monoid with a left zero, then the following are equivalent:

(i) All finitely generated right S-acts which satisfy Condition (P) are quasi-projective.

(ii) Every right reversible submonoid of S contains a left zero.

Recall that a right ideal K of a monoid S satisfies Condition (LU) if for every $x \in K, x \in Kx$ ([5]).

Proposition 1.5. Let S be a commutative monoid, then the following are equivalent:

(i) All quasi-projective acts over S are flat.

(ii) All quasi-projective acts over S are weakly flat.

(iii) All quasi-projective acts over S are principally weakly flat.

(iv) S is a regular monoid.

Proof. (i)\Rightarrow(ii), (ii)\Rightarrow(iii) are obvious.

(iii)\Rightarrow(iv). It is easy to see that over commutative monoids every cyclic act is quasi-projective. Thus for every $s \in S$, $\frac{S}{ss}$ is quasi-projective and so is principally weakly flat by assumption. Hence sS satisfies Condition (LU) and so s is regular.

(iv)\Rightarrow(i). It is well known that over a commutative regular monoid S, every act is flat.

\square
2 Semiperfect and perfect monoids with a left zero

Recall that a monoid S is right semiperfect if all cyclic strongly flat right S-acts are projective ([9]). In this section we give a new characterization of semiperfect and perfect monoids with a left zero. We present some results that we need in the sequel.

Proposition 2.1. Let B_S be an A_S-projective S-act. If C_S is either an S-homomorphic image or an S-subact of A_S, then B_S is C_S-projective.

Proof. Clearly, if C_S is a homomorphic image of A_S, then the result holds. Thus suppose C_S is a subact of A_S and consider an S-epimorphism $f : C \to \bar{C}$ and an S-homomorphism $g : B \to \bar{C}$ where \bar{C} is a right S-act. Let $\rho = \ker f \cup \Delta_A$ where Δ_A is the diagonal relation on A. Clearly $\bar{C} \simeq C/\ker f$. Thus if $\pi : A \to A/\rho$ is the natural epimorphism, then π is an extension of f. Since B is A-projective, there exists $h : B \to A$ such that $\pi \circ h = g$. It is easy to see that $h(B) \subseteq C$ and so h is an S-homomorphism from B to C, which proves that B is C-projective. \hfill \Box

One can easily see the following result.

Lemma 2.2. Suppose S is a monoid and A_S is a right S-act, then:

(i) If A is a cyclic right S-act, then A is projective if and only if A is weakly-projective.

(ii) If S contains a left zero and $A = \coprod_{i \in I} A_i$ is weakly-projective, then A_i is weakly-projective for every $i \in I$.

Lemma 2.3. Suppose S is a monoid with a left zero. If every finitely generated (strongly flat) right S-act has a quasi-projective cover, then every finitely generated (strongly flat) right S-act has a projective cover.

Proof. By Lemma 1.1 of [4] (Proposition 3.13.14 of [3] and Proposition 1.6 of [4]), it is sufficient to show that every cyclic (strongly flat) right S-act has a projective cover. Let $M = mS$ be a cyclic (strongly flat) right S-act and $\varphi : F \to M$ be an epimorphism such that F is a free S-act. Note that F can be regarded as a cyclic right S-act, because if $F = \coprod_{i \in I} a_i S$ and $m = \varphi(a_j t)$ for some $t \in S$ and $j \in I$, then $\varphi|_{a_j S} : a_j S \to mS$ is an
epimorphism. Thus if F is not cyclic we can consider the new epimorphism replace φ. Clearly, $F_S \sqcup M_S$ is finitely generated (strongly flat) and has a quasi-projective cover Q with an epimorphism $\psi : Q \to F_S \sqcup M_S$. Since F is cyclic, Q is finitely generated with two generators. If $F = aS$, then there exist $p, q \in Q$ such that $\psi(p) = m, \psi(q) = a$ and $Q = pS \sqcup qS$. Thus $\pi_F \circ \psi : Q \to F$ is an epimorphism. Since F is projective, there exists a homomorphism $h : F \to Q$ such that $\pi_F \circ \psi \circ h = 1_F$ and hence h is a coretraction. Since $F_S \simeq S_S$ and h is a monomorphism, S_S is a subact of Q. Thus by Proposition 2.1, Q is weakly-projective and by Lemma 2.2(i), it is projective. Clearly pS is the projective cover of M.

By the following theorem, we show that for a monoid S with a left zero to be semiperfect it is enough to show that every finitely generated strongly flat right S-act has a quasi-projective cover.

Theorem 2.4. For a monoid S with a left zero the following are equivalent:

(i) S is right semiperfect.

(ii) Every finitely generated strongly flat right S-act has a quasi-projective cover.

(iii) Every finitely generated strongly flat right S-act has a weakly-projective cover.

(iv) Every cyclic strongly flat right S-act has a weakly-projective cover.

(v) Every left collapsible submonoid of S contains a left zero (Condition (K)).

Proof. (i)\Rightarrow(ii), (i)\Rightarrow(iii). By Proposition 3.13.14 of [5] are clear. (iii)\Rightarrow(iv) is clear. (ii)\Rightarrow(i). By Lemma 2.3, every finitely generated strongly flat right S-act A_S, has a projective cover and so it is projective by Proposition 1.7 of [4]. (iv)\Rightarrow(i). If $A = aS$ is a strongly flat right S-act, then every cover of A is cyclic. Now the result follows by Proposition 1.7 of [4] and Lemma 2.2(i). The equivalence of (i) and (v) follows by Theorem 4.11.2 of [5].

Recall that a monoid S satisfies Condition(A) if every right S-act satisfies the ascending chain condition for its cyclic subacts ([5]). Fountain in [2], proved that a monoid S is right perfect if and only if every strongly
flat right S-act is projective. The next theorem improves this result by the notion of quasi-projectivity.

Theorem 2.5. Let S be a monoid with a left zero. The following are equivalent:

(i) S is right perfect.

(ii) Every strongly flat right S-act is quasi-projective.

(iii) S satisfies Condition (A) and every finitely generated strongly flat right S-act has a quasi-projective cover.

(iv) S satisfies Condition (A) and every cyclic strongly flat right S-act has a weakly-projective cover.

Proof. (i)\Rightarrow(ii) is clear. (ii)\Rightarrow(i). Suppose every strongly flat right S-act is quasi-projective. Then by Theorem 1.2, every strongly flat right S-act is projective. Thus S is right perfect by Theorem 1.8 of [4]. The equivalences of (i) and (iii), and also (i) and (iv) follow by Theorem 4.11.6 of [5] and Theorem 2.4.

Now we state the main result.

Theorem 2.6. Suppose S is a monoid with a left zero and every right S-act has only one zero element. If every right S-act has a quasi-projective cover, then S is right perfect.

Proof. We show that every right S-act has a projective cover. Suppose M_S is a right S-act and $\phi : F \to M$ is an epimorphism such that F_S is a free S-act. Let $F' = F - \{\theta_F\}$ and $M' = M - \{\theta_M\}$ and $B = F' \sqcup M' \sqcup \theta$, where θ is the one-element right S-act. Then B is a right S-act by the right S-action, $\theta.s = \theta$ and

$$
 b.s = \begin{cases}
 \theta, & \text{if } bs = \theta_F \text{ or } \theta_M; \\
 bs, & \text{otherwise}
 \end{cases}
$$

for every $s \in S$ and $b \in F' \sqcup M'$.

Suppose Q is a quasi-projective cover of $F' \sqcup M' \sqcup \theta$ with an epimorphism
Quasi-projective covers of right S-acts

$\pi : Q \to F' \sqcup M' \sqcup \theta$. Now define $q : F' \sqcup M' \sqcup \theta \to F' \sqcup \theta$ by

$$q(x) = \begin{cases} x, & x \in F' \sqcup \theta; \\ \theta, & x \in M'. \end{cases} \quad (2)$$

Clearly q is a homomorphism. Now consider the following diagram:

$$\begin{array}{ccc}
F' \sqcup \theta & \xrightarrow{\pi} & F' \sqcup M' \\
\downarrow^{1_{F' \sqcup \theta}} & & \downarrow^{q} \\
Q & \xrightarrow{\pi} & F' \sqcup \theta
\end{array}$$

Since $F' \sqcup \theta \simeq F$ is projective, there exists $i : F' \sqcup \theta \to Q$ such that $q \circ \pi \circ i = 1_{F' \sqcup \theta}$. Thus i is a monomorphism and we can regard F as a subact of Q. Let $K = \{ x \in Q : q(\pi(x)) = \theta_F \}$ and $K' = K - \{ \theta_Q \}$. Clearly $K' \sqcup i(F' \sqcup \theta)$ is a subact of Q. We show that $\pi_1 = \pi|_{K' \sqcup i(F' \sqcup \theta)} : K' \sqcup i(F' \sqcup \theta) \to F' \sqcup M' \sqcup \theta$ is an epimorphism. For this we show that $\pi(i(x)) = x$, for every $x \in F' \sqcup \theta$. Suppose $x \in F' \sqcup \theta$. If $x = \theta$, then clearly $\pi(i(\theta)) = \theta$. Suppose $x \in F'$ and let $z = \pi(i(x))$. Then $q(z) = q(\pi(i(x))) = x$. Thus $q(z) = x \in F'$. By the definition of q, $q(z) = z$, i.e., $z = x$. Thus $\pi(i(x)) = x$ for every $x \in F' \sqcup \theta$. Thus π_1 is an epimorphism and since π is coessential, $Q = K' \sqcup i(F' \sqcup \theta) \simeq K' \sqcup F' \sqcup \theta$. Now let $\pi_2 = \pi|_{K' \sqcup \theta} : (K' \sqcup \theta) \simeq K \to (M' \sqcup \theta) \simeq M$. Since π is coessential π_2 is a coessential epimorphism. Since F is a projective S-act, there exists $\phi' : F \to K$ such that the diagram

$$\begin{array}{ccc}
F & \xrightarrow{\phi'} & Q \\
\downarrow^{\pi_2} & & \downarrow^{Q} \\
K & \xrightarrow{\pi_2} & M
\end{array}$$

is commutative and $\pi_2 \circ \phi' = \phi$. Thus $\pi_2(\phi'(F)) = \phi(F) = M$ and, since π_2 is coessential, ϕ' is an epimorphism. Now define $q' : F' \sqcup K' \sqcup \theta \to K' \sqcup \theta$ by

$$q'(x) = \begin{cases} x, & x \in K' \sqcup \theta; \\ \theta, & x \in F'. \end{cases} \quad (3)$$
and $q'' : F' \sqcup K' \sqcup \theta \to F' \sqcup \theta$ by
\[
q''(x) = \begin{cases}
 x, & x \in F' \sqcup \theta; \\
 \theta, & x \in K'.
\end{cases}
\] (4)

Clearly q' and q'' are homomorphism. Now consider the following diagram
\[
\begin{array}{ccc}
F' \sqcup K' \sqcup \theta & \xrightarrow{q''} & (F' \sqcup \theta) \simeq F & \xrightarrow{\phi'} & (K' \sqcup \theta) \simeq K \\
\downarrow q' & & \downarrow h & & \downarrow 1_{K' \sqcup \theta} \\
K' \sqcup \theta & & 1_{K' \sqcup \theta} & & \\
\end{array}
\]

Since $F' \sqcup K' \sqcup \theta \simeq Q$ is quasi-projective, there exists $h : F' \sqcup K' \sqcup \theta \to F' \sqcup K' \sqcup \theta$ such that $\phi' \circ q'' \circ h = 1_{K' \sqcup \theta} \circ q'$. If $j : K' \sqcup \theta \to F' \sqcup K' \sqcup \theta$ is the canonical injection, then $q' \circ j = 1_{K' \sqcup \theta}$ and so $\phi' \circ q'' \circ h \circ j = 1_{K' \sqcup \theta}$. Thus $K \simeq K' \sqcup \theta$ is a retract of $F' \sqcup \theta \simeq F$ and so is projective. Hence K is the projective cover of M. \hfill \Box

Acknowledgement

The authors thank the anonymous referees for remarks which have helped in the revision of the first version of this paper.

References

Mohammad Roueentan, Department of Mathematics, College of science, Shiraz University, Shiraz 71454, Iran.

Email: m.rooeintan@yahoo.com

Majid Ershad, Department of Mathematics, College of science, Shiraz University, Shiraz 71454, Iran.

Email: ershad@shirazu.ac.ir